Quadratic embeddings

نویسندگان

  • Hans Havlicek
  • Corrado Zanella
چکیده

The quadratic Veronese embedding ρ maps the point set P of PG(n, F ) into the point set of PG( (n+2 2 ) − 1, F ) (F a commutative field) and has the following well-known property: If M ⊂ P, then the intersection of all quadrics containing M is the inverse image of the linear closure of Mρ. In other words, ρ transforms the closure from quadratic into linear. In this paper we use this property to define “quadratic embeddings”. We shall prove that if ν is a quadratic embedding of PG(n, F ) into PG(n′, F ′) (F a commutative field), then ρ−1ν is dimension-preserving. Moreover, up to some exceptional cases, there is an injective homomorphism of F into F ′. An additional regularity property for quadratic embeddings allows us to give a geometric characterization of the quadratic Veronese embedding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An exact, cache-localized algorithm for the sub-quadratic convolution of hypercubes

Fast multidimensional convolution can be performed naively in quadratic time and can often be performed more efficiently via the Fourier transform; however, when the dimensionality is large, these algorithms become more challenging. A method is proposed for performing exact hypercube convolution in sub-quadratic time. The method outperforms FFTPACK, called via numpy, and FFTW, called via pyfftw...

متن کامل

Two conjectures on strong embeddings and 2-isomorphism for graphs

We present two conjectures related to strong embeddings of a graph into a surface. The first conjecture relates equivalence of integer quadratic forms given by the Laplacians of graphs, 2-isomorphism of 2connected graphs, and strong embeddings of graphs. We prove various special cases of this conjecture, and give evidence for it. The second conjecture, motivated by ideas from physics and number...

متن کامل

Maximum Gradient Embeddings and Monotone Clustering

Let (X, dX) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f : X → T such that for every x ∈ X, ED [ max y∈X\{x} dT ( f (x), f (y)) dX(x, y) ] ≤ C(log n), where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient...

متن کامل

A Tropical Approach to Secant Dimensions

Tropical geometry yields good lower bounds, in terms of certain combinatorialpolyhedral optimisation problems, on the dimensions of secant varieties. In particular, it gives an attractive pictorial proof of the theorem of Hirschowitz that all Veronese embeddings of the projective plane except for the quadratic one and the quartic one are non-defective; this proof might be generalisable to cover...

متن کامل

Units in families of totally complex algebraic number fields

Multidimensional continued fraction algorithms associated with GL n (Z K), where Z k is the ring of integers of an imaginary quadratic field K, are introduced and applied to find systems of fundamental units in families of totally complex algebraic number fields of degrees four, six, and eight. 1. Introduction. Let F be an algebraic number field of degree n. There exist exactly n field embeddin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997